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Abstract

The  Cadenza  project  aims  to  better  define  what  music
personalised for  someone with a  hearing loss  should sound
like  and  explore  the  latest  in  machine  learning  to  create
improved listening experiences.

This  experiment  is  based  on  the  MUSDB18-HQ  database,
which includes 86 training songs and 14 validation songs. We
have  implemented  two  processes  to  derive  the  results;  1)
DEMUCS and 2) Spleeter, producing two sets of results. The
primary objective of both processes is to perform two stages
of  operation  on  the  input  audio  stems.  The  first  stage  of
demixing  is  performed  after  studying  various  models  like
Open-UnMix,  Conv-Tasnet,  and  waveunet,  leading  to  the
choice of Hybrid Demucs and Spleeter to complete the audio
source  separation.  For  the  second  stage  of  remixing  the
primary focus is  on applying compression,  equalization and
filters  to  facilitate  remixing.  We  have  used  multiband
compression to adjust the four control parameters of threshold,
ratio,  attack, and  release.  Also,  we  applied  side-chain
compression to control the dynamics of particular stems.  In
addition, we evaluated the output signal by the Hearing Aid
Audio Quality Index (HAAQI) metric.

At the same time, the team incorporates the listener's unique
hearing  characteristics  into  the  built  model,  providing
personalised  audio  enhancements  based  on  specific  hearing
profiles to improve the listening experience for people with
different hearing abilities.

GitHub(demucs):https://github.com/skystriker233/E012-
CAD1

GitHub(spleeter): https://github.com/sc22d2s/E016-CAD1

Index  Terms:  Hybrid  Demucs,  Spleeter,  Multiband
compression, Side-chain compression.

1. Introduction

The  Cadenza  Challenge  is  about  improving  the  perceived
audio quality of recorded music for people with a hearing loss.
The Cadenza Challenge is to first demix stereo tracks into a
VDBO  (vocal,  drums,  bass  and  other)  representation.  This
then allows for a personalised remixing for the listener that
may support improved audio quality perception. 

Figure 1: The baseline for the headphone listening
scenario.

1.1. Demixing Stage

The  first  stage  of  the  music  enhancement  process  involves
demixing the music using either the Hybrid Demucs model or
the Spleeter model. By applying one of the models, the music
is  separated  into  its  target  stems,  including  vocals,  drums,
bass, and other stereo components.

1.2. Hybrid Demucs model

The  Hybrid  Demucs  model  utilizes  a  time-domain-based
approach, specifically a wave-to-wave model that incorporates
a U-Net structure and a bidirectional LSTM.

1.3. Spleeter model

Spleeter is Deezer’s source separation library with pretrained
models written in Python and uses Tensorflow.

1.4. Remixing Stage

The remixing stage focuses on further  improving the audio
applying various Digital Signal Processing (DSP) algorithms:

1.5. Butterworth filter  

One of the key DSP algorithms used in the remixing stage is
the Butterworth filter. This type of signal processing filter was
chosen  as  it  is  designed to  have a  frequency  response  that
remains as flat as possible within the passband. By applying
the Butterworth filter, the audio's frequency components are
adjusted to achieve a more balanced and even sound.

1.6. Multiband Compression  

This  method  leverages  multiband  compression  for  audio
balance and consistency by independently managing specific
frequency bands. Utilising the four primary control parameters
- threshold,  ratio,  attack, and release, it  fine-tunes the highs
and lows of each instrument or the total mix for a streamlined
and refined audio output.

1.7. Sidechain Compression   

Sidechain a.k.a. parallel compression is a technique that uses a
signal from one instrument or voice to trigger a compressor on
another signal. The side-chaining signal is used to determine
the threshold of the compressor and thus control its effect on
the signal to be compressed.

2. Design and Implementation

2.1. System information

 HPC: We utilised High Performance Computing to
seamlessly  process  the  large  datasets  and
sophisticated audio separation models. We used the
MobaXTerm  interface  to  establish  an  SSH
connection to our University’s ARC4 systems.

 GPU:  Our  system was  run  on  GPUs via  ARC as
well as on Google Colab for preliminary study and
exploration. Using P4000 and V100 GPUs helped us
achieve faster computational speeds. 

https://github.com/skystriker233/E012-CAD1
https://github.com/skystriker233/E012-CAD1
https://github.com/sc22d2s/E016-CAD1


 Cloud  machine:  We  leveraged  PaperSpace  cloud
services  to  create  a  virtual  machine  and  run  our
enhancement process using their P4000 GPUs.

2.2. Model architecture

2.3. Description of the demixing stage

This  section  describes  the  demixing  stage  where  Hybrid
Demucs  and  Spleeter  have  been  used  for  audio  separation,
along  with  individualized  hearing  corrections  to  each
separated  stream.  The  personalized  hearing  corrections  are
based  on  listener  characteristics  defined  by  an  audiogram.
These steps successfully personalize the audio and produce a
remixed version of the song tailored to the individual's unique
hearing profile.

Exploring Hybrid Demucs demixing: 

In the Hybrid Demucs model,  we built  the Hybrid Demucs
pipeline, formats the waveform into chunks of the expected
size, and loops through the chunks (with overlap) and feeds
them into the pipeline. We then collect the output blocks and
combines them based on how they overlap.

Exploring Spleeter demixing: 
Spleeter uses a deep learning model trained to perform source
separation. The model has been pre-trained on a large dataset
to  identify  and  differentiate  between  different  signals  like
vocals  or  bass,  and  to  separate  these  from  a  mixed  audio
signal. 
The 'spleeter:4stems' model is used for this purpose, which is
specifically a U-Net model trained to separate audio into four
stems. 
Key specifications of Spleeter used in this task: 
 The Separator object is initialized with the 

'spleeter:4stems' configuration. This tells Spleeter to 
separate the audio into four stems: vocals, bass, drums, 
and other instruments. 

 The AudioAdapter is a Spleeter class that provides a 
consistent interface for loading and saving audio files. 

 audio_loader.load() is used to load the audio file into a 
NumPy array, resampling it to a sample rate of 44100Hz 
in the process. 

 separator.separate(waveform) is where the final demixing
happens. It takes the loaded waveform and separates it 
into the four stems. 

In the Spleeter model, to process audio signals we use libraries
such as soundfile to read and write audio files, and numpy for
mathematical  operations.  In  addition,  we  ran  into
computational limitations due to the high order of filters and
large  audio  files.  To  deal  with  these  issues,  we  used
techniques such as down and re-sampling to reduce data size
without compromising quality.

In summary, based on the characteristics of different listeners
(defined  by  their  audiograms),  we  applied  a  unique  set  of
corrections to each stem. The corrections are applied using the
NAL-R method implemented in the Clarity Toolset (an open-
source  library  for  hearing  aid  algorithm  research).  The
corrections are applied to match the gain-frequency response
to each listener's hearing abilities.

2.4. Description of the remixing stage

Keeping  the  balance  of  different  instruments  and  making
vocals more prominent are the focus of the remixing section.
We have created a simple intelligent system which can access
the  audiograms  and  analyse  the  audiograms  for  individual
listeners.  According  to  different  situations,  the  system will
apply different methods to do remixing with stems.

Exploring Hybrid Demucs remixing: 

For listeners who are not classified as having severe hearing
loss,  the  compressor  code  will  not  be  applied.  Table  1
elaborates  the  hearing  levels  we  assigned  based  on
corresponding audiometric values in decibels. If a listener is
with  a  moderately  severe  or  severe  hearing  loss  at  certain
frequencies, the system will decrease the level of bass, drums
and other. At the same time, the multiband compressor will be
applied to make vocals appear more prominent.

A  multiband  compressor  is  implemented  based  on  the
compressor  which  is  provided  in  the  baseline  system.  The
multiband compressor includes a Butterworth filter which is
used to isolate certain frequency ranges of the stem, so that the
compressor  only  compresses  these  specific  ranges.  Since  it
was not practical for us to use a compressor on each stem due
to the high time consumption when processing a large amount
of  audio samples,  the vocals  is chosen as the side chain to
process  the  ‘other’  stems  which  can  create  more  space  for
vocals.  As  ‘other’  may  include  keyboard  and  guitar,  they
might  compete  with  vocals.  However,  it  would  have  been
preferable for us to use compressors on all stems and work on
smaller  frequency  bands.  The  structure  and  flow  of  this
process is demonstrated in Figure 2.

Level of hearing
loss

Audiometric
range (dB)

Classification

0 0 – 19 dB No hearing loss

1 20 – 34 dB
Slight hearing

loss

2 35 – 49 dB
Moderate hearing

loss

3 50 – 64 dB
Severe hearing

loss

4 Above 65 dB
Profound hearing

loss

Table 1: Hearing loss classification

Exploring Spleeter remixing:

The  remixing  process  in  this  experiment  involves  the
application of specific listener characteristics to the demixed
(source separated) audio stems,  and then recombining these
modified stems back into a single audio signal (mixture). 

The remixing process is tailored to the hearing characteristics
of each listener. This means that the resulting audio is not a
simple recombination of the separated stems but is instead a
customized  version  of  the  audio  that  should  ideally  sound
better to the specific listener’s audiograms.

Key specifications of Spleeter used in this task:



 We apply a Butterworth bandpass filter to the remixed 
signal to filter out frequencies below 250 Hz and above 
18500 Hz. This is done to focus on this specific 
frequency range.

 A ‘FlacEncoder’ object is created and used to save the 
processed audio data in the FLAC format. This is done to
ensure audio quality is not degraded during the 
compression process.

 NALR is applied and maximum absolute value of each 
audio channel is saved to a .txt file. Audio data is 
normalized to the range of the int16 data type. This is a 
form of dynamic compression which ensures the volume 
of the audio stays within a certain range, preventing it 
from being too quiet or too loud.

 Resampling also takes place in this section where the 
audio is resampled to 32000Hz. Once all the filters and 
compressors are applied, we have our demixed, remixed, 
and enhanced signals.

Figure 2: Diagram for remixing section.

3. Results

The result  of  our  experiment  provides  us  with  two sets  of
audio signals  and evaluation metrics  as  our  submission has
two audio source separation models (Demucs and Spleeter).
We observed the differences between both models in all stages
of the experiment (see Table 2 for summary). We were able to
produce  enhanced  audio  signals  based  on  individual
audiograms of listeners.  Since we implemented the Demucs
baseline provided by Cadenza, our HAAQI scores remain the
same as existing baseline scores for Demucs. The enhanced
signals,  evaluation  metrics  and  a  detailed  technical  report
comprised of an overall result of this experiment.

Metric Demucs Spleeter

Audio 
Analysis

Individual stem 
files (VDBO) 
generated using 
Demucs had higher 
clarity and quality

Spleeter produced 
clean audio stems, 
but we observed 
that in our case the 
clarity was lesser 
than Demucs

Computational
Time

Running the 
enhancement 
process using 
Demucs took ~ 20 
hours on a P400 
GPU

Executing the 
process through 
Spleeter took ~6 
hours using V100 
GPU

Code 
Flexibility

We observed that 
Demucs had a few 
constraints while 
modifying or 
combining 
segments

Spleeter on the 
other hand had a 
much easier code 
flexibility providing
scope for 
customization

Evaluation 
Metrics

The HAAQI scores generated by Demucs 
were higher than the scored for Spleeter 
separated audio stems

Table 2: Comparing separation models

Since  we  made  use  of  two  models  (Hybrid  Demucs  and
Spleeter) in the demix stage, we will provide two submissions
for the Cadenza challenge (Task 1). Therefore, we submitted
the two results under the folders E012 and E016. The resultant
signals at the end of the experiment have been detailed below

The demixed signals

-The VDBO (vocal, drums, bass, other) demixed signals for
both left and right.

-Predefined 30-second segment.

-16-bit

-24 kHz sampling rate

-Compressed using the lossless FLAC compressor

The remixed stereo signals

-Predefined 15-second segment.

-16-bit

-32 kHz sampling rate

-Compressed using the lossless FLAC compressor

4. Discussion

During  this  research  and  implementation,  we  encountered
several  intensive  discussions  covering  an  array  of  topics
related  to  audio  source  separation  and  audio  signal
enhancement. A lot of our knowledge base was supported by
literature study which have been highlighted as references. 

We  extensively  studied  and  conducted  several  experiments
related to personalized audio separation. We established that
handling such large-scale audio data along with complex and
sophisticated audio processing models  such as  Demucs and
Spleeter  would  require  the  access  to  a  High-Performance
Computing  (HPC)  and  configuring  an  appropriate
computational environment. Utilizing HPC facilities is critical
given  the  high  computational  demands  of  training  complex
models and setting up this environment was a primary focus in
our  discussions.  While  performing  exploratory  analysis,  we
utilised Graphical Processing Units (GPUs) during evaluation
stages, owing to their capacity for parallel processing which
allowed  us  to  efficiently  handle  complex  machine  learning
models.



We  also  dissected  the  field  of  audio  separation  and
personalization,  considering  various  algorithmic  approaches
and evaluating their efficacy against our research objectives.
The  key  factors  that  allowed  us  to  arrive  at  a  decision  to
choose  Demucs  and  Spleeter  revolved  around  model
performance,  accuracy,  computational complexity as well  as
the quality of results they provide. 

Establishing  an  initial  strategy  for  audio  separation  was
pivotal to ensure the differentiation of multiple sound sources
within an audio stream. As the process evolved, this strategy
underwent  several  iterations of  refinement  based  on  all  the
real-world, theoretical, and analytical knowledge we gathered
during our study. 

We  delved  into  the  comparison  between  standard  and
multiband  compressors,  elucidating  the  advantages  of
multiband compression in providing refined audio control over
different frequency bands. We also agreed to utilize parallel
compression  for  dynamic  control  of  instrument  or  voice
signals,  thereby  enhancing  audio  quality.  As  part  of  our
auditory analysis, we decided to employ the Audacity software
to scrutinize mixed music. We had a listening test on a smaller
dataset  in  a  studio.  After  evaluating  these  audios,  it  was
discovered that increasing the volume of vocals may not be a
wise method to make vocals prominent. Actually, it can result
in  an  overall  increase  in  the  loudness  of  remixed  audios.
Therefore,  we  decided  to  lower  the  volume  of  other
instruments to present vocals in the middle frequencies instead
of adjusting the loudness of vocals. 

A  crucial  aspect  of  our  technical  dialogue  involved  the
integration of distinct code segments into a cohesive whole,
with  an  emphasis  on  designing  a  code  structure  that  is
efficient, maintainable, and scalable. We were able to collate
multiple  segments  of  code and choose the best  parameters,
models  and  options  which  were  mindful  of  computational
complexities,  running  time,  cost  efficiency  and  most
importantly results that fitted the objectives of our project the
best. 

5. Conclusion

To summarize, we applied the Hybrid Demucs model and the
Spleeter  model  to  demix  the  music  and  applied  multiband
compressor,  side  chain  compressor  and  filters  to  remix  the
separated audio. As a result, we generated two results of the
remixed  stereo  signals.  We  modified  the  enhanced  the
demixing, enhancement and remixing whereas the evaluation
section  was  left  untouched  as  regulations  for  the  task
recommended. The final result of this experiment aligned with
the  initial  aim  we  had  set  out  with,  and  we  were  able  to
produce  audio  signal  stems  and  remixed  music  for  the
Cadenza Challenge task 1, for listeners with hearing loss to
evaluate  our  stems  based  on  perceived  quality  over
headphones.
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