
The Cadenza Challenge – Task 1
(Author names removed for reviewer anonymity)

Abstract

The Cadenza project aims to better define what music
personalised for someone with a hearing loss should sound
like and explore the latest in machine learning to create
improved listening experiences.

This experiment is based on the MUSDB18-HQ database,
which includes 86 training songs and 14 validation songs. We
have implemented two processes to derive the results; 1)
DEMUCS and 2) Spleeter, producing two sets of results. The
primary objective of both processes is to perform two stages
of operation on the input audio stems. The first stage of
demixing is performed after studying various models like
Open-UnMix, Conv-Tasnet, and waveunet, leading to the
choice of Hybrid Demucs and Spleeter to complete the audio
source separation. For the second stage of remixing the
primary focus is on applying compression, equalization and
filters to facilitate remixing. We have used multiband
compression to adjust the four control parameters of threshold,
ratio, attack, and release. Also, we applied side-chain
compression to control the dynamics of particular stems. In
addition, we evaluated the output signal by the Hearing Aid
Audio Quality Index (HAAQI) metric.

At the same time, the team incorporates the listener's unique
hearing characteristics into the built model, providing
personalised audio enhancements based on specific hearing
profiles to improve the listening experience for people with
different hearing abilities.

GitHub(demucs):https://github.com/skystriker233/E012-
CAD1

GitHub(spleeter): https://github.com/sc22d2s/E016-CAD1

Index Terms: Hybrid Demucs, Spleeter, Multiband
compression, Side-chain compression.

1. Introduction

The Cadenza Challenge is about improving the perceived
audio quality of recorded music for people with a hearing loss.
The Cadenza Challenge is to first demix stereo tracks into a
VDBO (vocal, drums, bass and other) representation. This
then allows for a personalised remixing for the listener that
may support improved audio quality perception.

Figure 1: The baseline for the headphone listening
scenario.

1.1. Demixing Stage

The first stage of the music enhancement process involves
demixing the music using either the Hybrid Demucs model or
the Spleeter model. By applying one of the models, the music
is separated into its target stems, including vocals, drums,
bass, and other stereo components.

1.2. Hybrid Demucs model

The Hybrid Demucs model utilizes a time-domain-based
approach, specifically a wave-to-wave model that incorporates
a U-Net structure and a bidirectional LSTM.

1.3. Spleeter model

Spleeter is Deezer’s source separation library with pretrained
models written in Python and uses Tensorflow.

1.4. Remixing Stage

The remixing stage focuses on further improving the audio
applying various Digital Signal Processing (DSP) algorithms:

1.5. Butterworth filter

One of the key DSP algorithms used in the remixing stage is
the Butterworth filter. This type of signal processing filter was
chosen as it is designed to have a frequency response that
remains as flat as possible within the passband. By applying
the Butterworth filter, the audio's frequency components are
adjusted to achieve a more balanced and even sound.

1.6. Multiband Compression

This method leverages multiband compression for audio
balance and consistency by independently managing specific
frequency bands. Utilising the four primary control parameters
- threshold, ratio, attack, and release, it fine-tunes the highs
and lows of each instrument or the total mix for a streamlined
and refined audio output.

1.7. Sidechain Compression

Sidechain a.k.a. parallel compression is a technique that uses a
signal from one instrument or voice to trigger a compressor on
another signal. The side-chaining signal is used to determine
the threshold of the compressor and thus control its effect on
the signal to be compressed.

2. Design and Implementation

2.1. System information

 HPC: We utilised High Performance Computing to
seamlessly process the large datasets and
sophisticated audio separation models. We used the
MobaXTerm interface to establish an SSH
connection to our University’s ARC4 systems.

 GPU: Our system was run on GPUs via ARC as
well as on Google Colab for preliminary study and
exploration. Using P4000 and V100 GPUs helped us
achieve faster computational speeds.

https://github.com/skystriker233/E012-CAD1
https://github.com/skystriker233/E012-CAD1
https://github.com/sc22d2s/E016-CAD1

 Cloud machine: We leveraged PaperSpace cloud
services to create a virtual machine and run our
enhancement process using their P4000 GPUs.

2.2. Model architecture

2.3. Description of the demixing stage

This section describes the demixing stage where Hybrid
Demucs and Spleeter have been used for audio separation,
along with individualized hearing corrections to each
separated stream. The personalized hearing corrections are
based on listener characteristics defined by an audiogram.
These steps successfully personalize the audio and produce a
remixed version of the song tailored to the individual's unique
hearing profile.

Exploring Hybrid Demucs demixing:

In the Hybrid Demucs model, we built the Hybrid Demucs
pipeline, formats the waveform into chunks of the expected
size, and loops through the chunks (with overlap) and feeds
them into the pipeline. We then collect the output blocks and
combines them based on how they overlap.

Exploring Spleeter demixing:
Spleeter uses a deep learning model trained to perform source
separation. The model has been pre-trained on a large dataset
to identify and differentiate between different signals like
vocals or bass, and to separate these from a mixed audio
signal.
The 'spleeter:4stems' model is used for this purpose, which is
specifically a U-Net model trained to separate audio into four
stems.
Key specifications of Spleeter used in this task:
 The Separator object is initialized with the

'spleeter:4stems' configuration. This tells Spleeter to
separate the audio into four stems: vocals, bass, drums,
and other instruments.

 The AudioAdapter is a Spleeter class that provides a
consistent interface for loading and saving audio files.

 audio_loader.load() is used to load the audio file into a
NumPy array, resampling it to a sample rate of 44100Hz
in the process.

 separator.separate(waveform) is where the final demixing
happens. It takes the loaded waveform and separates it
into the four stems.

In the Spleeter model, to process audio signals we use libraries
such as soundfile to read and write audio files, and numpy for
mathematical operations. In addition, we ran into
computational limitations due to the high order of filters and
large audio files. To deal with these issues, we used
techniques such as down and re-sampling to reduce data size
without compromising quality.

In summary, based on the characteristics of different listeners
(defined by their audiograms), we applied a unique set of
corrections to each stem. The corrections are applied using the
NAL-R method implemented in the Clarity Toolset (an open-
source library for hearing aid algorithm research). The
corrections are applied to match the gain-frequency response
to each listener's hearing abilities.

2.4. Description of the remixing stage

Keeping the balance of different instruments and making
vocals more prominent are the focus of the remixing section.
We have created a simple intelligent system which can access
the audiograms and analyse the audiograms for individual
listeners. According to different situations, the system will
apply different methods to do remixing with stems.

Exploring Hybrid Demucs remixing:

For listeners who are not classified as having severe hearing
loss, the compressor code will not be applied. Table 1
elaborates the hearing levels we assigned based on
corresponding audiometric values in decibels. If a listener is
with a moderately severe or severe hearing loss at certain
frequencies, the system will decrease the level of bass, drums
and other. At the same time, the multiband compressor will be
applied to make vocals appear more prominent.

A multiband compressor is implemented based on the
compressor which is provided in the baseline system. The
multiband compressor includes a Butterworth filter which is
used to isolate certain frequency ranges of the stem, so that the
compressor only compresses these specific ranges. Since it
was not practical for us to use a compressor on each stem due
to the high time consumption when processing a large amount
of audio samples, the vocals is chosen as the side chain to
process the ‘other’ stems which can create more space for
vocals. As ‘other’ may include keyboard and guitar, they
might compete with vocals. However, it would have been
preferable for us to use compressors on all stems and work on
smaller frequency bands. The structure and flow of this
process is demonstrated in Figure 2.

Level of hearing
loss

Audiometric
range (dB)

Classification

0 0 – 19 dB No hearing loss

1 20 – 34 dB
Slight hearing

loss

2 35 – 49 dB
Moderate hearing

loss

3 50 – 64 dB
Severe hearing

loss

4 Above 65 dB
Profound hearing

loss

Table 1: Hearing loss classification

Exploring Spleeter remixing:

The remixing process in this experiment involves the
application of specific listener characteristics to the demixed
(source separated) audio stems, and then recombining these
modified stems back into a single audio signal (mixture).

The remixing process is tailored to the hearing characteristics
of each listener. This means that the resulting audio is not a
simple recombination of the separated stems but is instead a
customized version of the audio that should ideally sound
better to the specific listener’s audiograms.

Key specifications of Spleeter used in this task:

 We apply a Butterworth bandpass filter to the remixed
signal to filter out frequencies below 250 Hz and above
18500 Hz. This is done to focus on this specific
frequency range.

 A ‘FlacEncoder’ object is created and used to save the
processed audio data in the FLAC format. This is done to
ensure audio quality is not degraded during the
compression process.

 NALR is applied and maximum absolute value of each
audio channel is saved to a .txt file. Audio data is
normalized to the range of the int16 data type. This is a
form of dynamic compression which ensures the volume
of the audio stays within a certain range, preventing it
from being too quiet or too loud.

 Resampling also takes place in this section where the
audio is resampled to 32000Hz. Once all the filters and
compressors are applied, we have our demixed, remixed,
and enhanced signals.

Figure 2: Diagram for remixing section.

3. Results

The result of our experiment provides us with two sets of
audio signals and evaluation metrics as our submission has
two audio source separation models (Demucs and Spleeter).
We observed the differences between both models in all stages
of the experiment (see Table 2 for summary). We were able to
produce enhanced audio signals based on individual
audiograms of listeners. Since we implemented the Demucs
baseline provided by Cadenza, our HAAQI scores remain the
same as existing baseline scores for Demucs. The enhanced
signals, evaluation metrics and a detailed technical report
comprised of an overall result of this experiment.

Metric Demucs Spleeter

Audio
Analysis

Individual stem
files (VDBO)
generated using
Demucs had higher
clarity and quality

Spleeter produced
clean audio stems,
but we observed
that in our case the
clarity was lesser
than Demucs

Computational
Time

Running the
enhancement
process using
Demucs took ~ 20
hours on a P400
GPU

Executing the
process through
Spleeter took ~6
hours using V100
GPU

Code
Flexibility

We observed that
Demucs had a few
constraints while
modifying or
combining
segments

Spleeter on the
other hand had a
much easier code
flexibility providing
scope for
customization

Evaluation
Metrics

The HAAQI scores generated by Demucs
were higher than the scored for Spleeter
separated audio stems

Table 2: Comparing separation models

Since we made use of two models (Hybrid Demucs and
Spleeter) in the demix stage, we will provide two submissions
for the Cadenza challenge (Task 1). Therefore, we submitted
the two results under the folders E012 and E016. The resultant
signals at the end of the experiment have been detailed below

The demixed signals

-The VDBO (vocal, drums, bass, other) demixed signals for
both left and right.

-Predefined 30-second segment.

-16-bit

-24 kHz sampling rate

-Compressed using the lossless FLAC compressor

The remixed stereo signals

-Predefined 15-second segment.

-16-bit

-32 kHz sampling rate

-Compressed using the lossless FLAC compressor

4. Discussion

During this research and implementation, we encountered
several intensive discussions covering an array of topics
related to audio source separation and audio signal
enhancement. A lot of our knowledge base was supported by
literature study which have been highlighted as references.

We extensively studied and conducted several experiments
related to personalized audio separation. We established that
handling such large-scale audio data along with complex and
sophisticated audio processing models such as Demucs and
Spleeter would require the access to a High-Performance
Computing (HPC) and configuring an appropriate
computational environment. Utilizing HPC facilities is critical
given the high computational demands of training complex
models and setting up this environment was a primary focus in
our discussions. While performing exploratory analysis, we
utilised Graphical Processing Units (GPUs) during evaluation
stages, owing to their capacity for parallel processing which
allowed us to efficiently handle complex machine learning
models.

We also dissected the field of audio separation and
personalization, considering various algorithmic approaches
and evaluating their efficacy against our research objectives.
The key factors that allowed us to arrive at a decision to
choose Demucs and Spleeter revolved around model
performance, accuracy, computational complexity as well as
the quality of results they provide.

Establishing an initial strategy for audio separation was
pivotal to ensure the differentiation of multiple sound sources
within an audio stream. As the process evolved, this strategy
underwent several iterations of refinement based on all the
real-world, theoretical, and analytical knowledge we gathered
during our study.

We delved into the comparison between standard and
multiband compressors, elucidating the advantages of
multiband compression in providing refined audio control over
different frequency bands. We also agreed to utilize parallel
compression for dynamic control of instrument or voice
signals, thereby enhancing audio quality. As part of our
auditory analysis, we decided to employ the Audacity software
to scrutinize mixed music. We had a listening test on a smaller
dataset in a studio. After evaluating these audios, it was
discovered that increasing the volume of vocals may not be a
wise method to make vocals prominent. Actually, it can result
in an overall increase in the loudness of remixed audios.
Therefore, we decided to lower the volume of other
instruments to present vocals in the middle frequencies instead
of adjusting the loudness of vocals.

A crucial aspect of our technical dialogue involved the
integration of distinct code segments into a cohesive whole,
with an emphasis on designing a code structure that is
efficient, maintainable, and scalable. We were able to collate
multiple segments of code and choose the best parameters,
models and options which were mindful of computational
complexities, running time, cost efficiency and most
importantly results that fitted the objectives of our project the
best.

5. Conclusion

To summarize, we applied the Hybrid Demucs model and the
Spleeter model to demix the music and applied multiband
compressor, side chain compressor and filters to remix the
separated audio. As a result, we generated two results of the
remixed stereo signals. We modified the enhanced the
demixing, enhancement and remixing whereas the evaluation
section was left untouched as regulations for the task
recommended. The final result of this experiment aligned with
the initial aim we had set out with, and we were able to
produce audio signal stems and remixed music for the
Cadenza Challenge task 1, for listeners with hearing loss to
evaluate our stems based on perceived quality over
headphones.

6. References
[1] Défossez, Alexandre, et al. “Music Source Separation in the

Waveform Domain.” ArXiv:1911.13254 [Cs, Eess, Stat], 28
Apr. 2021, arxiv.org/abs/1911.13254.

[2] Sawata, Ryosuke, et al. “All for One and One for All: Improving
Music Separation by Bridging Networks.” ICASSP 2021 - 2021
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 6 June 2021,
https://doi.org/10.1109/icassp39728.2021.9414044. Accessed 10
July 2023.

[3] Fabian-Robert Stöter, Stefan Uhlich, Antoine Liutkus, Yuki
Mitsufuji. Open-Unmix - A Reference Implementation for
Music Source Separation. Journal of Open Source Software,
2019, The Journal of Open Source Software, 4 (41), pp.1667.
ff10.21105/joss.01667ff. ffhal-02293689f.

[4] Stoller, Daniel, et al. “Wave-U-Net: A Multi-Scale Neural
Network for End-To-End Audio Source Separation.” ArXiv.org,
2018, arxiv.org/abs/1806.03185.

[5] Zafar Rafii, Antoine Liutkus, Fabian-Robert Stöter, Stylianos
Ioannis Mimilakis, Rachel Bittner. MUSDB18 - a corpus for
music separation. 2017, ff10.5281/zenodo.1117371ff. ffhal-
02190845.

[6] Stylianos Ioannis Mimilakis, et al. A Recurrent Encoder-
Decoder Approach with Skip-Filtering Connections for
Monaural Singing Voice Separation. 1 Sept. 2017,
https://doi.org/10.1109/mlsp.2017.8168117. Accessed 1 June
2023.

[7] John W.B. Hershey, et al. “Deep Clustering: Discriminative
Embeddings for Segmentation and Separation.” ArXiv (Cornell
University), 20 Mar. 2016,
https://doi.org/10.1109/icassp.2016.7471631. Accessed 21 Apr.
2023.

[8] Martínez-Ramírez, Marco A., et al. “Automatic Music Mixing
with Deep Learning and Out-of-Domain Data.” Arxiv.org, 24
Aug. 2022, arxiv.org/abs/2208.11428,
https://doi.org/10.48550/arXiv.2208.11428.

[9] Mitsufuji, Yuki, et al. “Music Demixing Challenge 2021.”
Frontiers in Signal Processing, vol. 1, 28 Jan. 2022, p. 808395,
arxiv.org/abs/2108.13559,
https://doi.org/10.3389/frsip.2021.808395. Accessed 23 July
2023.

[10] Cohen-Hadria, Alice, et al. “Improving Singing Voice
Separation Using Deep U-Net and Wave-U-Net with Data
Augmentation.” ArXiv.org, 4 Mar. 2019,
arxiv.org/abs/1903.01415. Accessed 23 July 2023.

[11] Défossez, Alexandre. “Hybrid Spectrogram and Waveform
Source Separation.” ArXiv.org, 30 Aug. 2022,
arxiv.org/abs/2111.03600. Accessed 23 July 2023.

[12] Cheeks, Joseph. IMPORTANCE of SPACE and HOW to
CREATE IT USING SIDE-CHAIN COMPRESSION. 2017.

[13] Hennequin, Romain & Khlif, Anis & Voituret, Felix &
Moussallam, Manuel. (2020). Spleeter: a fast and efficient music
source separation tool with pre-trained models. Journal of Open
Source Software. 5. 2154. 10.21105/joss.02154

	The Cadenza Challenge – Task 1
	1. Introduction
	1.1. Demixing Stage
	1.2. Hybrid Demucs model
	1.3. Spleeter model
	1.4. Remixing Stage
	1.5. Butterworth filter
	One of the key DSP algorithms used in the remixing stage is the Butterworth filter. This type of signal processing filter was chosen as it is designed to have a frequency response that remains as flat as possible within the passband. By applying the Butterworth filter, the audio's frequency components are adjusted to achieve a more balanced and even sound.

	1.6. Multiband Compression
	1.7. Sidechain Compression

	2. Design and Implementation
	2.1. System information
	2.2. Model architecture
	2.3. Description of the demixing stage
	2.4. Description of the remixing stage

	3. Results
	The demixed signals
	The remixed stereo signals

	4. Discussion
	5. Conclusion
	6. References

