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Abstract
Music source separation, or music demixing, is the task
of decomposing a song into its constituent sources, which
are typically isolated instruments (e.g., drums, bass, and
vocals). Open-Unmix (UMX), and the improved variant
CrossNet-Open-Unmix (X-UMX), are high-performing
models that use Short-Time Fourier Transform (STFT)
as the representation of music signals, and apply masks
to the magnitude STFT to separate mixed music into
four sources: vocals, drums, bass, and other.

The time-frequency uncertainty principle states that
the STFT of a signal cannot be maximally precise in both
time and frequency. The tradeoff in time-frequency res-
olution can significantly affect music demixing results.
For the Cadenza Challenge in 2023, we submitted a
model, xumx-sliCQ-V2,1 which replaces the STFT with
the sliCQT, a time-frequency transform with varying
time-frequency resolution. Our system achieved an SDR
score of 4.4 dB on the MUSDB18-HQ test set.
Index Terms: music source separation, music demix-
ing, deep neural networks, time-frequency resolution,
MUSDB18-HQ

1. Introduction
The STFT is computed by applying the Discrete Fourier
Transform on fixed-size windows of the input signal.
From both auditory and musical motivations, variable-
size windows are preferred, with long windows in low-
frequency regions to capture detailed harmonic informa-
tion with a high frequency resolution, and short windows
in high-frequency regions to capture transients with a
high time resolution [1]. The sliCQ Transform (sliCQT)
[2] is a time-frequency transform with complex Fourier
coefficients and perfect inverse that uses varying win-
dows to achieve nonlinear time or frequency resolution.
An example application of the sliCQT is an invertible
Constant-Q Transform (CQT) [3].

2. Methodology
From the guidelines of the Cadenza challenge and to en-
sure reproducibility, we only relied on the standard and
widely-available MUSDB18-HQ dataset [4] for training
and evaluation of xumx-sliCQ-V2.

In xumx-sliCQ-V2, we kept the same sliCQT pa-
rameters from the older variant, xumx-sliCQ [5]. The
sliCQT parameters are 262 bins on the Bark scale be-
tween 32.9–22050 Hz, chosen in a random parameter

1https://github.com/sevagh/xumx-sliCQ/tree/v2

search to maximize the mix-phase or noisy-phase ora-
cle [5]. STFT and sliCQT spectrograms of a glockenspiel
signal are shown in Figure 1.

The STFT outputs a single time-frequency matrix
where all of the frequency bins are spaced uniformly apart
and have the same time resolution. The sliCQT groups
frequency bins, which may be nonuniformly spaced, in a
ragged list of time-frequency matrices, where each ma-
trix contains frequency bins that share the same time
resolution. In xumx-sliCQ-V2, convolutional layers were
applied separately to each time-frequency matrix, shown
in Figure 2.

We made three significant changes to the older sys-
tem, xumx-sliCQ, which account for the improved per-
formance of xumx-sliCQ-V2.

2.1. Improved overlap-add

The sliCQT subdivides the input signal into “slices” of
length N that are “symmetrically zero-padded to length
2N” [2, 10]. To create a spectrogram, adjacent slices need
to be 50% overlap-added with each other, with no inverse
operation. In xumx-sliCQ-V2, we incorporated the slice
size in the kernel and stride of the first convolution layer
and last transpose convolution layer to avoid the non-
invertible overlap-add procedure, shown in Figure 3.

2.2. Differentiable Wiener filtering and complex MSE

In xumx-sliCQ, the mean-squared error (MSE) loss func-
tion is applied to the magnitude spectrogram estimates
of the neural network. The post-processing Wiener filter-
ing step is then used to further improve the separation
results and create the estimated complex spectrograms.
Danna-Sep [6], a winning system from MDX 21, incorpo-
rated the Wiener filtering step into the neural network
to output complex spectrograms, and used the complex
mean-squared error as the loss function. We did the same
in xumx-sliCQ-V2.

2.3. Mask-sum loss

The final activation layer of xumx-sliCQ-V2 is the sig-
moid function (∈ [0.0, 1.0]), to apply as a soft mask (or
ratio mask) to the magnitude spectrogram of the mix. An
underlying simplifying assumption in music demixing is
that the mix is a linear sum of the sources. Therefore,
the sum of the four target masks should be exactly equal
to one, shown in Equation (1). In xumx-sliCQ-V2, we
introduce an additional loss term called the “mask-sum
loss” which computes the MSE of the sum of the esti-



Figure 1: STFT and sliCQT spectrograms of the musical glockenspiel signal

Figure 2: Convolutional denoising autoencoders (CDAE) applied to the ragged sliCQT

Figure 3: Incorporating slice zero-padding into the convolutional layers

mated masks with the expected total mask of ones.

xmix = xv + xd + xb + xo

|X|mix = Mv|X|mix +Md|X|mix +Mb|X|mix +Mo|X|mix

1 = Mv +Md +Mb +Mo (1)

3. Results
Our model, xumx-sliCQ-V2, was trained on MUSDB18-
HQ. On the test set, xumx-sliCQ-V2 achieved a total
SDR of 4.4 dB versus the 4.64 dB of UMX and 5.54 dB
of X-UMX, performing worse than the original STFT-
based models, but better than the first xumx-sliCQ which
scored 3.6 dB.

4. Discussion
The Cadenza Challenge Task 1 applies further processing
on top of the VDBO demixing system, and the final eval-
uation uses the HAAQI metric. We chose to focus only
on the VDBO music demixing problem, and used BSS
metrics to measure the improvement of xumx-sliCQ-V2
over xumx-sliCQ.

We believe that the mask-sum loss term of xumx-
sliCQ-V2 to enforce the linear additive mixture assump-
tion can be generally applied to any system based on
spectrogram-masking and potentially improve their re-
sults.

5. Conclusion
We presented xumx-sliCQ-V2, an improved variant of
xumx-sliCQ, which replaces the STFT of X-UMX with a
Bark-scale sliCQT, a nonuniform time-frequency trans-
form whose characteristics more closely map to the hu-
man auditory system. The total SDR went from 3.6 dB
to 4.4 dB, demonstrating significantly improved music
demixing results from the changes in xumx-sliCQ-V2.
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