

The 1st Cadenza Challenge: Improving Music for Those With Hearing Loss

Michael A. Akeroyd, Scott Bannister, Jon Barker, **Trevor J. Cox**, Bruno Fazenda, Jennifer Firth, Simone Graetzer, Alinka E. Greasley, Gerardo Roa Dabike, Rebecca Vos, William M. Whitmer

http://cadenzachallenge.org/

Tasks

1. Listening over headphones

2. Listening in the car in the presence of noise

Audio Quality

Imagine listening to the same music track:

- 1. A low quality mp3 via a cheap cell phone
- 2. A high quality wav via studio-grade loudspeaker monitors.

The underlying music is the same in both cases, but the *audio quality* is very different.

Description of the Problem

- A person with a hearing loss is listening to music via headphones. They're not using their hearing aids.
- Decompose a stereo song into a VDBO (vocal, drums, bass and other) representation.
 - (Allows a personalised remixing not part of the challenge)
- Downmix the VDBO to recreate stereo
- Evaluation using:
 - HAAQI (Hearing Aid Audio Quality Index)
 - VDBO and downmix stereo
 - Listening panel
 - downmix stereo

Engineering and Physical Sciences Research Council

The University of **Nottingham**

Baseline

Frequency (Hz)

Materials

- Datasets
 - MUSDB18-HQ dataset
 - Listener audiogram
- Baseline
 - Demucs
 - Open-UnMix
- Rules
 - Non-causal or causal

HAAQI – objective BAQ – listener rating of basic audio quality

System	HAAQI (VDBO)	HAAQI (Remix)	BAQ (Remix)
Baseline Demucs	0.255	0.711	41.23
Baseline Open-Unmix	0.225	0.638	-
Music NAL-R (Internal Submission)	0.203	0.524	32.92
Mid-Side (Internal Submission)	0.236	0.274	41.70
Do Nothing (Reference Signal)	0.421	0.429	43.47
System E005	0.094	0.691	41.42
System E016	0.135	0.263	39.27
System E012	0.255	0.686	40.84
System E022	0.195	0.228	36.04

Engineering and Physical Sciences Research Council

Listener Panel Overview

Listener Panel: 53 hearing-aid users

200 trials (25 music samples x 8 systems)

Attributes (0-100):

- Basic Audio Quality
- Clarity
- Harshness
- Distortion
- Frequency Balance (bassy, balanced, trebly)
- *Likeability*

Engineering and Physical Sciences Research Council

The University of Nottingham

University Sheffield

Unfocused Unbalanced Warm Thick Spacious Spiky Solid Recognisable Slow Screechy Quiet Narrow Piercing Subtle Pale Middley Melodic Hollow Soft Tinny Indistinct Harsh Gentle Resonant Distinct Congested Coherent Opaque Trebley Mushy Dull Clear Bouncy Full Messy Sharp Hazy Blurred Bassless Echoey Strong Clarity Balanced Defined Noisy Muffled Hard Shouty Discordant Bassy Blended Good Raucous Edgy Brassy Bright Flat Loud Rumbley Confused Poor Compressed Shrill Punchy Flowing Distant Rich Fuzzy Mellow Washed Hissing Jazzy Wide Interferencey Muddy Okay Muddled Thin Percussive Plaintive Rhythmic Reverberant Smooth Sweet Sonorous Twangy Unclear

Engineering and Physical Sciences Research Council

The University Of Sheffield.

Pilot Testing (N= 34)

20 music samples

Attributes (0-100):

- Bass Strength
- Clarity
- Distortion
- Frequency Balance
- Harshness
- Middle Strength
- Spaciousness
- Treble Strength

Ranked attributes in terms of importance for their perceptual experience

Engineering and Physical Sciences Research Council

The University Of Sheffield.

BAQ Across Systems

- Results from judgments of the sound of the music, in relation to a person's expectations of how the music should ideally sound to them.
- (1) Cadenza baseline system
- (21) Cadenza reference system

This is across all music samples!

Basic Audio Quality (BAQ) ratings by system

The University Of Sheffield.

BAQ + Attributes – Correlations

- Clarity and Low Distortion are strongly related to BAQ
- Low-Harshness and Low-Distortion are strongly correlated

Engineering and

Physical Sciences

Research Council

Likeability is also related to BAQ

BAQ vs. HAAQI

- Substantial amount of data
- Noisy relationship between BAQ and HAAQI scores
- Different systems tiered by HAAQI, less so by BAQ?

Engineering and

Physical Sciences

Research Council

cadenza

BAQ vs. HAAQI

- 50% of systems suggest relationship between BAQ + HAAQI
- Is there consistent behaviour / strategy that explains this?
- Much to be analysed!

