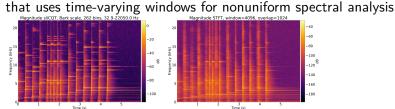
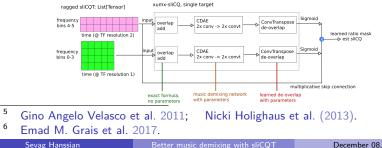

Better music demixing with sliCQT Submission to Cadenza Challenge CAD1

Sevag Hanssian

December 08, 2023

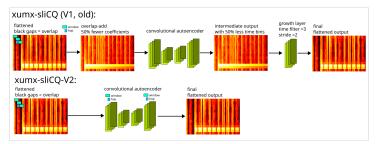
Time-frequency tradeoffs


Median-filtering harmonic/percussive source separation (HPSS)¹


- Short window (256) for percussion, long window (4096) for harmonic
- Short-time Fourier Transform (STFT) window size matters per-target² in VDBO problems
- In musical and auditory contexts, frequency resolution should increase from high to low frequencies (vice-versa for time resolution)³
- CQT⁴ uses long windows in low frequencies and short windows in <u>high frequencies for the 1</u>2-tone Western pitch scale
 - ¹ Derry Fitzgerald. 2010; Jonathan Driedger et al. 2014.
 - ² Ilya Kavalerov et al. IEEE, 2019.
 - ³ Christian Schörkhuber et al. 2012; Monika Dörfler. PhD thesis. 2002.
 ⁴ Judith Brown. (1991).

xumx-sliCQ v1 @ MDX 2021

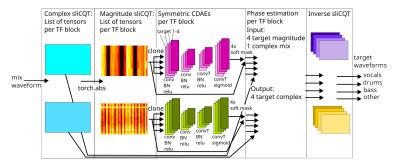
• sliCQ Transform⁵ is an STFT-like transform with **perfect inverse**



 Bark scale (262 bins 32.9–22050 Hz) sliCQT + convolutional denoising autoencoder (CDAE) architecture⁶ to achieve 3.6 dB SDR

xumx-sliCQ v2 @ CAD1 2023

- Bark scale may have some benefits for human listeners
- Pocused solely on VDBO demixing problem
- Better handling of overlap-add, mask sum loss, differentiable Wiener filtering, and complex MSE⁷: github.com/sevagh/xumx-sliCQ



$$\begin{split} x_{\text{mix}} &= x_{\text{v}} + x_{\text{d}} + x_{\text{b}} + x_{\text{o}} \\ |X|_{\text{mix}} &= M_{\text{v}}|X|_{\text{mix}} + M_{\text{d}}|X|_{\text{mix}} + M_{\text{b}}|X|_{\text{mix}} + M_{\text{o}}|X|_{\text{mix}} \\ &\rightarrow 1 = M_{\text{v}} + M_{\text{d}} + M_{\text{b}} + M_{\text{o}} \end{split}$$

⁷ Chin-Yun Yu et al. arXiv preprint arXiv:2112.03752 (2021).

4/6

xumx-sliCQ v2: results

- **1** 4.4 dB SDR up from 3.6
- IAAQI score: mean of 0.094 vs. 0.255 of Baseline 1 (demucs)
- BAQ score: mean of 41.84 vs. 41.40 of Baseline 1 (demucs)
- More efficient (using bfloat16 for faster training and inference, etc.)
- Weights are 60 MB
- I Fast realtime variant with 4.0 dB SDR using causal convolutions

New demixing-related project

Aim of these systems are to improve listening experience for those with different hearing.⁸ VDBO models are not very accessible (inscrutable Python errors, need >64GB RAM, etc.)

https://freemusicdemixer.com

Optimized C++ inference for UMX + Demucs, compiled to WebAssembly, running in the web, client-side on your browser, under 4 GB of memory

⁸http://cadenzachallenge.org/about